skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Johnny"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Strong correlations identified between barrier heights/widths for concerted proton transfer in cyclic hydrogen bonded clusters and properties of minima (dissociation energies/frequency shifts). 
    more » « less
  2. McCaw, James M (Ed.)
    Defective interfering particles (DIPs) are virus-like particles that occur naturally during virus infections. These particles are defective, lacking essential genetic materials for replication, but they can interact with the wild-type virus and potentially be used as therapeutic agents. However, the effect of DIPs on infection spread is still unclear due to complicated stochastic effects and nonlinear spatial dynamics. In this work, we develop a model with a new hybrid method to study the spatial-temporal dynamics of viruses and DIPs co-infections within hosts. We present two different scenarios of virus production and compare the results from deterministic and stochastic models to demonstrate how the stochastic effect is involved in the spatial dynamics of virus transmission. We compare the spread features of the virus in simulations and experiments, including the formation and the speed of virus spread and the emergence of stochastic patchy patterns of virus distribution. Our simulations simultaneously capture observed spatial spread features in the experimental data, including the spread rate of the virus and its patchiness. The results demonstrate that DIPs can slow down the growth of virus particles and make the spread of the virus more patchy. 
    more » « less